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Critical behavior of random walks
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We have studied numerically the trapping problem in a two-dimensional lattice where particles are
continuously generated. We have introduced interaction between particles and directionality of their
movement. This model presents a critical behavior with a rich phase structure similar to spin systems.
We interpret a change in the asymptotic density of particles as a phase transition. For high directionali-
ty the change is abrupt, possibly of first order. For small directionality the phase transition is of higher
order. We have computed the phase diagram, the volume dependence of the critical point, and the re-

laxation time of the system in the large volume limit.

PACS number(s): 05.40.+j

I. INTRODUCTION

One of the problems of a discrete-time lattice random
walk is the trapping problem [1]. It concerns the tem-
poral evolution of a system composed by N random walk-
ers moving into a random distribution of traps. This sys-
tem has been used to model diffusion processes [2,3], ab-
sorption of atoms by molecules, and magnetization decay
in high-T, superconductors where the particles are
represented by vortices [4].

We introduce an interaction, a so-called nonoverlap-
ping interaction, by forbidding occupation of a single site
by more than one particle. We have also extended previ-
ous models by introducing directionality in the particle
movement. Directionality is implemented by assigning a
final position represented by a lattice site, uniformly dis-
tributed in the lattice, to every particle. Particles will
move to their final points according to a probability dis-
tribution that is explained below. Due to directionality,
the mean number of steps that a particle needs to reach
its final point (at distance r) is not proportional to 2, as
in the free case [5], but is proportional to r¥ with y <2.
This holds for a system without interaction, where the
particles can be at the same lattice site. The effect of in-
teraction increases when particle density increases.

The conflict between directionality and density is
resolved when the system relaxes. We distinguish two
evolution possibilities: the system reaches saturation
which prevents the particles from moving in any direc-
tion, or it reaches a dynamical equilibrium state. In the
latter situation, each particle walks for some time, until it
reaches its final point where it disappears. The density of
particles is asymptotically stable.

We have studied the transition between the dilute sys-
tem and the saturated system. More precisely, is this
change abrupt or continuous? (Is there a phase transition
between the two evolutionary possibilities, and what is
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the order of this transition?) A rich phase diagram ap-
pears where we distinguish two regions, one of them with
a first order transition, and another one with a higher or-
der transition, possibly second order. We have calculated
the behavior of the system when V— o0.

The time taken to reach the asymptotic state, the relax-
ation time 7,, strongly depends on the directionality and
density. The behavior of 7, is similar to the behavior of
the correlation length close to a phase transition in a spin
model and to the magnetization relaxation of a high-7,
superconductor [4].

II. MODEL

Consider a two-dimensional discrete-time lattice with a
coordination number of 4. We impose periodic condi-
tions in both directions. Particles are on lattice sites n
that are characterized by (ny,n;). The model can be de-
scribed with the two parameters 8 and p.

For every time step, we consider all lattice sites. If the
considered site is free, we create a particle with creation
probability p. If the particle is created, a final point for
this particle is generated uniformly in the lattice. If the
considered site is occupied, the particle is moved in the
direction u (u takes the values +0,—0, +1, —1) accord-
ing to the probability distribution

(1)

where n,{ is the coordinate u of the final point of the par-
ticle, n,, is the coordinate p of the particle, and sgn(x) is
the signum function. N is chosen to normalize the proba-

bility:

> P(u)=1. (2)
tp

f_
P(iy)zNei[sgn(n# n“)ﬂ] ,

When the chosen site is occupied, the particle does not
move and it remains at the same lattice site until the next
time step. If the site is free and it is precisely the final
point, the particle disappears. A particle can at most
move once in one time step. To implement this, we as-
sign to every site a “spin” taking the value 1 if the site is
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occupied, or O if it is free.

We describe the evolution of the system through the
mean number of particles. By analogy with spin systems,
this number is called the magnetization of the system,

vV
M=01/V)3 oli), 3)

i=1

where o (i) equals 1 if the site is occupied and O if the site
is free. The magnetization is analogous to the density of
particles in the system.

The choice of the parameters p and S is due to the fact
that these parameters present limits easy to recognize. B
can be regarded as the inverse of the temperature of the
system. Movements of the particle are more random
when the temperature is increased. We will return to this
point below.

It is interesting, and very intuitive, to recognize what
happens for limiting values of the parameters. When
B—0, the probability takes the simple form P(u)=1
which corresponds to a random choice of the next site.
In the absence of other particles this is like a Brownian
movement of particles with a “high temperature.” When
B— «, the particle can only move in the direction p
which brings it nearer to its final point. In this case there
are no alterations from the minimum-length path that
joins the particle with its final point. Thus the system is
at “‘zero temperature.”

In the limit p —0, the system has a very low particle
density, and there is little interaction between the parti-
cles. The particles move from their origin to their des-
tination with small fluctuations depending on S. When 8
approaches 0, we see a typical random walk of particles
that are generated with probability p. The number of
surviving particles after n steps is related to the expected
number of distinct sites visited by an n step random walk
[6-10]). The particles arrive at this final site, at distance
r, after r? steps. With increasing p, the system becomes
more dense. Due to the interaction between particles, the
number of steps that a particle needs to reach its final
point increases. Ultimately there is a situation in which
the system saturates, when the density becomes high
enough to prevent any movement. No particle can move
through the lattice and the temporal evolution of the sys-
tem will not change significantly. When we increase the
value of BB, so that directionality increases, the particle ar-
rives faster at its final point. In this case the value of p
that produces saturation should be larger.

We distinguish other regions in our model. When B is
large enough, the directionality is so strong that particles
always choose the minimum path to reach their final
point. This phenomenon prevents overlap between the
paths of particles with opposite final points. The system
saturates for smaller p values.

About the transition, we would like to point out that,
for small values of B, the system can reach large values of
magnetization without system saturation because the in-
teraction is of little importance, so that a particle can
reach its final site through various ways. Before satura-
tion, the density is large, and the transition between the
two phases is not abrupt.

On the other hand, for large S (but not large enough to
produce the no overlap between paths explained below)
every particle moves to its final point quickly. For small
values of p, the density is small. When p increases, parti-
cles increasingly interact, and the system creates obsta-
cles that propagate quickly. The system saturates more
abruptly than for small B.

III. NUMERICAL SIMULATION

We have run Monte Carlo simulations in order to
study the full parameter space of the model, the possible
phase transition, and the behavior in the V— o limit,
and the relaxation time. The two-dimensional square lat-
tice has a length L, with periodic boundary conditions.
Simulation has been performed by using a custom
machine with 64 transputers T805 [11].

We have mapped out the (B,p) parameter space global-
ly for some L values to find strong changes in the tem-
poral evolution of the system. Time (z) is expressed in
the number of iterations of the Monte Carlo simulation,
where the iteration is a tentative sequential update of all
lattice sites. The updating procedure for a single site has
the following steps.

(A) If the site is free, generation of a random number
between 0 and 1 occurs. If the randomly generated num-
ber is less than p, a particle appears at this site. Other-
wise, no particle is created. In order to implement the
“occupation” of a site, we assign a “spin” of value 1 to
the site if the site is occupied, and O if the site is not occu-
pied. In this way, we can obtain the number of particles
in he system by summing all *“‘spins.”

(B) If the site considered is occupied by a particle, this
particle attempts to move in one of the four directions ac-
cording to the following. Since we know the probability
for all directions from Eq. (1), we divide the interval [0,1]
into four parts proportional to the probability assigned to
every spatial direction. Next, a random number between
0 and 1 is generated. This number is contained in one of
the four intervals into which the interval [0,1] is divided.
The particle will move in a direction corresponding to
that interval. With this algorithm, we reproduce the
probability distribution weighted by S.

(1) If the chosen site is not occupied, the particle moves
to it, and when that site is the final point of the particle,
it disappears at this same step.

(2) If the site is occupied, the particle remains at its
original point, and the next site in the lattice is con-
sidered. The interaction between particles is implement-
ed by preventing a particle from moving into an occupied
site.

(C) Particles move at most once per update.

When the final point is at a distance larger than L /2,
considering distance as X, —X. .., because of the
periodic boundary conditions the most favorable direc-
tion is such that the particle takes the shortest path.

The asymptotic value of M,

M — lim M(t) )

t— 0

is the parameter which labels the phases of the model.
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The relevant quantity in order to study the state of the
system is the magnetization as defined in (3). M depends
on ¢ (¢ is the number of Monte Carlo iterations) and if M
approaches 1 for t — o, the system is saturated, and the
number of particles that reach their final point does not
compensate the rate of creation. If M <1 the system
reaches a dynamic equilibrium between creation and an-
nihilation of particles.

M is not a true order parameter from a statistical
point of view, because it is always positive over all the
phase diagram. However, as we will see in the next sec-
tions, this quantity presents a clear change of behavior as
a function of p at each value of B, and it is therefore a
good parameter in order to establish where the transition
takes place. We call the value where this change in M,
appears p.. In fact p, is a function of 8 and L, the lattice
size.

IV. RESULTS AND PHASE DIAGRAM

A. General results about the phase diagrams

At each value of L, B, and p we run a Monte Carlo
simulation. The starting configuration is obtained by
creating a particle at each site with probability p. We
start therefore with an initial magnetization of order pV.

We have studied several lattice sizes: L =20, 40, 60, 80,
and 100. We have run a different number of Monte Carlo
(MC) iterations depending on the convergence of M(t).
At each value of the parameters, we have performed typi-
cally (1-2)X 10°> MC iterations. We have also made the
simulation starting from different configurations, and we
have allowed the system to evolve until 5 X 10° iterations,
in order to compute the value of M, accurately. We
have computed the error in M, and p, by calculating the
dispersion between the results obtained starting from
different configurations.

At each MC iteration we measure the number of parti-
cles (3), obtaining M(¢) a function of the MC time ¢ (see
Fig. 1). Our order parameter, in order to determine the
phase we are in, is the asymptotic value of this parameter

M(t)
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FIG. 1. Temporal evolution of magnetization for p <p, and
p>p. performed for an L=40 lattice with B=1.0. p. is
0.000 35.

M . As can be seen in this figure, the time required to
attain this asymptotic value depends strongly on p. At
each B value in the small p(p <<p,) region (“dilute sys-
tem”’), this behavior is reached after a small time, and
also in the large p(p >>p.) region. In the intermediate
p(p=p,) region (where the system undergoes very large
fluctuations), this time becomes enormous (see Sec. IV C).

We have carried out a careful study in order to assure
that in every case further time evolution does not change
M(t), first from different starting configurations, to see if
the final state depends on the initial one. We have found
no evidence of this dependence. In Fig. 2, we show M(z)
for several starting configurations. Secondly, after M(t)
has reached an apparently asymptotic behavior, because
the time evolution of M(t) seems to be stable, we have
completed up to four times more iterations (5X 10° itera-
tions); M (t) continues stable.

In Fig. 3 we present the evolution of M _ as a function
of p for two values of B and L fixed. As can be observed
in this figure, the system presents two phases. There is a
phase in which the system saturates, and another one in
which asymptotic magnetization is less than 1.

First, for small values of p, there is no saturation. In
this case, the density is small and the system never col-
lapses. We go through the parameter space by increasing
p. For p>p,, the system changes from a value of M,
less than 1 to the saturation value.

However, the behavior of this quantity is different for
large and small B. The system makes this change in a
smooth way for small values of B, and the change is less
smooth when B increases. For B close to 1, the change is
abrupt; the density changes from a small value to 1 by
making a jump.

For large 8 values the strong change at p, tells us that
M, is discontinuous and we can speak of a behavior
similar to a first order transition as in Z, spin gauge sys-
tems at high dimensions. As we will see, we can also find
a quantity with a similar behavior to the correlation
length in the spin systems, making this similarity
stronger.

For smaller values of B also both phases are present,
but now the change is smoother, and we can see that
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FIG. 2. Temporal evolution of M starting from three
different configurations for L =40, 8=1.0, and p =0.000 25.
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FIG. 3. Asymptotic magnetization for
P=p., in an L =40 lattice with =0 and for

-
o
AR R R R RN RN AR RAR N AR R RRR RARRE RARRE AR}

B=1.0. The discontinuity is abrupt for =1.4
and smooth for =0.2. The value of M, is
calculated after (3—4) X 10° MC iterations.
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there is no discontinuity in M ,. However, for large p,
M =const=1, and for small p, M —0; therefore a
discontinyity might occur for some (3"M /3"p) at some
intermediate value of p; this is similar to higher order
phase transitions, where discontinuities at the nth deriva-
tive of operators are a signal of an (n + 1)th order transi-
tion.

In the phase diagram on Fig. 4 we plot the values ob-
tained for p, for a wide range of B values. We can see
how p,. increases until a maximum. After this maximum
p. decreases and for large B p. decays slowly (Fig. 4).

We try to explain this behavior. At first, when B in-
creases, particles arrive more quickly at their final point.
Because of this the system supports larger p’s without
saturation. This fact occurs for the first region of S.
When B has increased enough, particles cannot deviate
from their shortest path to reach the final site. A particle
cannot avoid other particles by going in the opposite
sense. This produces a collapse that propagates quickly
to the entire lattice. The value of p, decreases for large 8
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FIG. 4. Phase diagrams for L =20, 40, 60, and 100. We have
used a logarithmic scale to represent p..

due to this phenomenon.

This behavior is related to the appearance of metasta-
ble states in diffusion-controlled processes [12]. The au-
thors show that, in the case of equal initial concentra-
tions of reactants, an extremely long-living metastable
state is formed so that the whole system is split into areas
or domains, each consisting of only one type of particle.
The average size of such clusters grows slowly with time.
In the system we are considering now, in the region of
large B, the impossibility of particle crossing creates a
wall which prevents particles from moving across it; two
(or more) domains are formed and they grow and fill up
the lattice.

B. Volume dependence

We have performed the simulation for various lattice
volumes. As can be observed in the figures, for fixed
value of B, the value of p. decreases when the lattice size
increases. This behavior is expected because particles
must walk larger distances when the lattice size increases.
Therefore if the path if larger, a particle will find more
particles in its way (“obstacles”) to reach the final point.
These two facts combine and p, decreases. We can sum-
marize this by saying that saturation is produced earlier
when lattice size increases. The volume dependence of p,
for a given 8 value can be studied with accuracy for those
values of 8 in which the transition is abrupt, because p, is
determined more precisely. We have studied this depen-
dence for B=1.4 and §=2.0 The results can be observed
in Fig. 5. We find that in both cases the dependence can
be written in the form

p.=AL™%, 4)

where a=2.33%0.01 for f=1.4, and a=2.36%0.01 for
B=2.0. We have checked that this power law is true for
all values of 8> 1.0.

The fact that > 2 in (4) is important in order to estab-
lish the L — oo limit of the model in the particular case of
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constant number of particles. That is to say, consider the
special case where the same number of particles is created
independently of L. To do that, we must fix p propor-
tional to L ~2. At small ¢ values, where the system is not
saturated even in the p > p, region, the number of parti-
cles created at each time is of the order of

pL[1—M(t)]=pL?,

valid if M(z)71. In the case of a constant rate of particle
creation independently of L, the situation in the large L
region is very different depending on a.

If a>2, the system has only one saturated region in
that limit, and if a <2 only a dilute region is present. In
the third case, a=2, both phases coexist. In general, for
any finite L two different phase are present in all cases.

For small S values, there is great difficulty in finding
the critical point accurately. This is due to the fact that
saturation is reached at high values of M. Thus we have
not found a clear power law in this region.

C. Relaxation time

As we have pointed out, the system needs time to reach
the asymptotic value of M. We have studied the evolu-
tion of this time with p, as a function of L and 8. To be
more definite we have measured, for every value of the
parameter p, the time the system needs to reach a value
of M equal to M , /e, called the relaxation time ,.

We expect small values of 7, for values of p far from p,.
For p in the neighborhood of p.7, increases, and will
reach its maximum value for p =p,.

We have supposed that the temporal evolution follows
an exponential law,

M, —M(t)=Be' "1/9" (5)

With this definition, the relaxation time 7, is given by &.
We found good agreement of our data with this formu-

la. In Fig. 6 the result is plotted for a lattice size L =40

with B=1.0. We have shown in the inset the temporal

In M(t)

FIG. 6. M,—M() for L=40,
B=1.0, p=0.00045. Points have been fitted to
a straight line whose slope is 7,.
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evolution for a value of p>p,. We have obtained the
value of § by plotting In[M —M(¢)], fitting to a straight
line whose slope is 1/£:

In[M_,—M(t)]=4—(1/&)t . (6)

The fit to a straight line is good for p >p ., because the
behavior of M is better defined. M does not fluctuate
when the system reaches saturation. For small values of
p, the system is less “determinate,” M fluctuates around
its mean value, and the fit is less accurate. Finally, we
have represented the evolution of 7, for various values of
the parameter p, finding the expected behavior (see Fig.
7.

The correlation £ has a behavior similar to that of the
correlation length in a spin system around a phase transi-
tion. For large values of B, for p greater than p, but close
to it, there is little correlation. For p less than p_, but
close to it, the correlation is also small. This is due to the
fact that in both cases the system reaches the asymptotic
behavior in a short time. In fact, the transition is discon-
tinuous and M, is lower than 1 for p <p, and M, =1
for p >p, (Fig. 3). At p.,M ., depending on the starting
configuration, the system evolves to the saturation or to
the dilute regime, in a similar way to a spin system at the
critical temperature in a first order phase transition.

For B small, the determination of p. has large statisti-
cal errors, and it has not been possible to measure 7, ac-
curately. With our partial results a possible scenario
could be the following.

For small values of 8, near p,,M . is continuous, ap-
proaching 1 for p—p_ (Fig. 3). For p <p., the system
evolves in a finite time to M, and 7, is finite; also for
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FIG. 7. Evolution of 7, with p, for 8=1.0 in an L =40 lat-
tice. We have plotted 7, as a function of (p —p.)/p., called p,.
7, is maximal for p, =0, i.e., for p=p.,.

p>p. - At p=p,_ the system needs an infinite time to
reach M, and then 7, diverges. This behavior is similar
to a second order phase transition.
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